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 Introduction. Brain–computer interface (BCI) tech-
nology allows people to learn to control external executive 
devices on the basis of extracting command features from 
the electroencephalogram (EEG) without activation of motor 
nerves or muscles [Wolpaw, 2007]. BCI technology is now 
most in demand in medicine, due to its potential to be used 
for controlling robotic devices – manipulators and wheel-
chairs [Alqasemi and Dubey, 2010; Lopes et al., 2011] – and 
for rehabilitation – as an additional set of procedures direct-
ed to restoring lost motor functions after trauma and stroke 
[Vidaurre et al., 2016], as well as providing such patients 
with the ability to communicate when speech and movement 

functions are impaired or lost [Nijboer et al., 2008]. To con-
trol the BCI, the user has to comply with instructions to carry 
out mental tasks in several functional states for which echoes 
can be extracted from the EEG signal and transformed into 
commands associated with these states.
 In BCI based on the P300 wave (BCI-P300), selection 
of commands is based on analysis of event-related poten-
tials arising in response to presentation of a set of external 
stimuli to the user. These BCI can consist of a matrix of 
letters and other symbolic objects or stimuli whose indi-
vidual elements can be illuminated separately [Farwell and 
Donchin, 1988]. To select the desired symbol, the user has 
to pay active attention to its illumination, at the same time 
ignoring illumination of all other symbols. The moment at 
which the stimulus on which the user is focusing attention 
appears is accompanied by a specifi c reaction – increases 
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genic stimuli can have different effects on the focusing of 
attention in subjects with severe anxiety disorders, induc-
ing differences in ERP as compared with nonanxious sub-
jects [Wang et al., 2013]. Furthermore, impairments to the 
recognition of emotions and memory for faces have been 
demonstrated in subjects with clinically high risk of devel-
opment psychosis [Skugarevskaya and Khomenko, 2013] 
and such mental disorders as autism [Hobson et al., 1988]. 
Impairments to the mechanisms of social-emotional percep-
tion are characteristic not only of individuals with autistic 
disorder, but are also seen in subclinical signs of autistic 
behavioral features where, as in autism, the electrophysio-
logical features of the perception of emotiogenic stimuli are 
identifi ed [Stavropoulos et al., 2016].
 Thus, the aims of the present work were to identify the 
features of ERP in response to presentation of subjectively 
signifi cant stimuli to humans in the absence of active atten-
tion to them due to instructions and to test the hypothesis that 
the subject’s attention to the subjectively signifi cant stimuli 
can be detected on the basis of BCI-P300 technology.
 Experimental verifi cation of hypotheses used pre-
sumptively signifi cant stimuli consisting of two standard-
ized basic photographic images of a neutral stimulus and 
an emotional stimulus: one consisted of photographs of 
different themes and subjects and the other included only 
photographic images of human faces. Assessment of the 
subjective emotional signifi cance of the stimuli presented 
to each subject was based on personal questionnaires.
 Methods. A total of 14 healthy subjects aged 19–25 
(median 21) years took part in the study – fi ve men and nine 
women. After familiarization with the details of the study, 
all subjects signed informed consents. The study was ap-
proved by the Bioethics Committee, Lomonosov Moscow 
State University.
 Visual stimuli were presented sequentially using 
the oddball paradigm at the center of a 24ʺ LCD monitor 
with angular dimensions of 36° × 23°. Stimulus material 
consisted of photographs of human faces (Psychological 
Image Collection at Stirling, PICS [Hancock, 2008]) or 
photographs of different themes and subjects (International 
Affective Picture System, IAPS) [Lang, 2008]). Stimuli of 
size 9.2° × 13.8° (faces) and 12.9° × 9.6° (images) were pre-
sented on the dark gray background of the screen. Stimulus 
presentation duration was 200 msec and the interval be-
tween two neighboring stimuli was 500 msec during which 
the screen was empty. EEG traces and stimulus presentation 
were run in BCI2000 (www.bci2000.org) [Schalk, 2004]. 
The study included a total of three blocks, each of which 
was divided into 10 EEG traces with stimulus presentation:
 (1) “Passive attention. Faces.” Subjects were instruct-
ed to watch the center of the screen, where the stimuli ap-
peared so as to see them clearly. Subjects were also told that 
they would then have to perform some task with the stimuli 
that they saw. Stimuli were photographs of human faces 
from the PICS collection.

in the amplitudes of the P300 wave and other components 
of event-related potentials (ERP). Comparison of ERP re-
sponses to different stimuli allows the BCI to extract the us-
er’s focus of attention on the signifi cant (target) symbol and 
execute a command previously linked with it, for example, 
printing the corresponding letter on the screen.
 An important condition for the appearance of specif-
ic responses in the EEG, determining successful command 
selection in the classic BCI-P300 technology, is the sig-
nifi cance to the user of the target stimulus specifi ed by the 
instructions, which generates active selective attention to 
this stimulus. However, the P300 wave in EEG reactions 
can be induced by stimuli attracting a person’s attention in 
an unclear manner, i.e., without prior instructions or which 
lack clear practical interest. This involuntary (automatic) 
attention can occur when these stimuli have subjective sig-
nifi cance for the person, due to personal experience, emo-
tional status, or biological need [Ohman et al., 2001]. For 
example, for respondents with particular dependencies, in-
creases in the amplitude of ERP components were demon-
strated in passive responses to stimuli associated with the 
dependence: presentation of images of chocolate [Asmaro 
et al., 2012] or drugs [Asmaro et al., 2014] to people with 
powerful predilections for chocolate or regularly consum-
ing marijuana, respectively.
 Thus, the stimulus presentation paradigm with the 
BCI-P300 is in many ways suitable for studies where the de-
tection of EEG reaction characteristics for particular classes 
of stimuli and the predictive capacity of the EEG in terms 
of assigning one or another stimulus to particular classes are 
important. Stimuli with biological signifi cance or emotional 
coloration induce reactions not requiring conscious process-
ing [Ohman et al., 198; Ohman et al., 2001]. However, re-
gardless of whether the process of perception of such stimuli 
is conscious or not, they are signifi cant for the subject, thus 
being discriminated from other background stimuli, and can 
therefore regarded as signifi cant (or “target”) in the context 
of the BCI. This opens up the possibility of instrumented 
detection of target or emotionally signifi cant stimuli in terms 
of specifi c components of the EEG reaction.
 Selecting stimuli for the BCI-P300 in this way and 
modifying some details of the methodology allowed us to 
create a system for recognition at the level of unclear foci of 
attention rather than voluntary intentional commands.
 Such involuntary displacement of attention to a partic-
ular stimulus can result from the psychophysiological char-
acteristics of the individual and his or her personal experi-
ence, so systems of this type can be used as additional 
means for the instrumented diagnosis of states due to the 
subject’s psychoemotional status and, perhaps, various 
mental disorders.
 In particular, these systems can be used for the au-
tomatic detection of states of increased arousal in people 
working in the responsible professions with high emotional 
loadings [Singh et al., 2015]. It is also known that emotio-
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ues of the signal in an individually selected window (in 
view of the extensive variations in peak latencies). On aver-
age, the latency of the N170 component was 160–200 msec, 
that of the P200 component 200–300 msec, and that of the 
P300 component 300–400 msec. When there were diffi cul-
ties in identifying particular components, the subjects con-
cerned were excluded from the analysis of that component. 
Components were analyzed in the leads where they had the 
greatest values: P300 and P200 in Cz and Pz, and N170 as 
the average of leads PO7, PO8, O1, and O2.
 The classifi cation effi ciency of responses to emotio-
genic and target stimuli was evaluated using the BCI-P300 
approach with a classifi er based on Fisher linear discrimina-
tion. Classifi cation testing was by cross-validation with 
analysis of signals in the most typical leads for BCI–P300: 
Cz, P3, Pz, P4, PO7, PO8, O1, and O2. The classifi er was 
trained using the whole set for all traces in one block, apart 
from traces used for testing the classifi er; the next trace was 
tested at each iteration, with repeat training of the classifi er 
on the set obtained after exclusion of data from the test 
trace. Training was performed using two classes – target 
(emotiogenic) stimuli and nontarget (neutral) stimuli. On 
testing the classifi er at the training stage, weightings were 
applied to the test properties of the signal, and so-called 
“output” of the classifi er was calculated for each of the six 
unique stimuli in the trace. By analogy with the classical 
BCI-P300 approach, “target” stimuli were those for which 
the “output” value, averaged for the 10 stimulus sequences 
in the trace, was maximal. If this stimulus was the emotio-
genic stimulus, (blocks 1 and 2) or the target stimulus as 
specifi ed by the task (block 3), the classifi cation was regard-
ed as successful. Results were analyzed in MatLab R2013b 
(8.2) (MathWorks) using scripts written for these studies 
and in Statistica 7.0 (StatSoft).
 Results. Group average amplitudes for ERP compo-
nents P300, P200, and N170 were analyzed to compare re-
sponses to presentation of emotiogenic stimuli in conditions 
of passive attention and active attention (with instructions 
to note target neutral stimuli) in blocks (2) and (3) (Fig. 1). 
The amplitudes of the P300 (in Cz and Pz) and P200 (in Pz) 
components, as well as the amplitudes of the N170 com-
ponent in response to emotiogenic stimuli among neutral 
stimuli, showed no differences in the absence and presence 
of active attention to the stimuli being presented (p > 0.05, 
paired Student’s test). The amplitude of the P200 compo-
nent (in Pz) in response to emotiogenic stimuli in the task 
with active attention was 1.99 ± 0.20 μV (mean ± standard 
error of the mean) and was greater than that in the task with 
passive attention (1.13 ± 0.30, t(12) = –2.44, p < 0.05).
 In block (3), with active attention, the amplitudes of 
ERP components in responses to emotiogenic stimuli out-
side the focus of attention and neutral stimuli which were 
identifi ed by instructions to subjects as target stimuli were 
analyzed (Fig. 1). The amplitude of the P300 component in 
response to target stimuli in lead Cz was 4.39 ± 0.36 μV, 

 (2) “Passive attention. Images.” The instruction was 
analogous, but stimuli were images from the IAPS collections.
 (3) “Active attention.” One of the images at the begin-
ning of the trace was designated the target and the subject 
was instructed make a clear mental note of the moment at 
which the target stimulus appeared. Stimuli were the same 
set of images from the IAPS collection as used in block (2).
 Stimuli for each block were grouped into sets of six for 
each trace. The order of stimulus sets in all traces within each 
block was specifi ed randomly for all subjects. Stimulation 
was delivered as sequences of stimuli, each of which in-
cluded presentation of all six stimuli in the set once each in 
random order. One trace contained 10 stimulus sequences, 
corresponding to presentation of each of the six images 10 
times in random order. In total, each was block thus consist-
ed of presentation of 600 stimuli. The order of the blocks 
was alternated randomly for all subjects with the condition 
that block (3), with active attention, was always last.
 Stimulus sets were formed in such a way that each set 
contained images with different emotional colorations, most 
of which were neutral, while one or two could carry dif-
ferent (positive or negative) emotional colorations for the 
subjects. After completion of the fi rst two blocks and before 
starting the last block, subjects evaluated all the images seen 
on a visual analog scale. Images were sequentially presented 
on the screen for 1000 msec, after which the subjects had 
to assess the image by placing a mark on a scale of length 
100 mm with the extreme values “Did not produce any emo-
tion” / “Produced emotion.” The group of emotiogenic stim-
uli in each block was formed on the basis of the results of 
the subjects’ subjective assessment of the stimuli: the image 
with the highest points score on this scale was regarded as 
emotiogenic and was taken as the minimum threshold cal-
culated for each subject. In block (3), the target stimulus in 
each trace was always the most neutral image, which was 
also monitored after subjects completed the scales. Thus, the 
fi rst two blocks provided for analysis of ERP in response to 
emotiogenic stimuli in conditions of the passive attention 
paradigm and the third block for analysis of ERP with an 
increased level of attention to the task, both for emotiogenic 
stimuli outside the focus of attention and for neutral target 
stimuli to which attention was focused by instruction.
 The EEG was recorded in 24 channels: F3, Fz, F4, 
FC5, FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P7, 
P3, Pz, P4, P8, PO7, POz, PO8, O1, and O2. The combined 
reference electrodes were positioned on the mastoid pro-
cesses. ERP analysis of the EEG signal after removal of oc-
ulomotor artifacts was by band fi ltration in the range 0.5–20 
Hz (Butterworth fi lter), followed by individual averaging of 
epochs for emotiogenic/target stimuli and nontarget stimuli. 
Before averaging, the number of epochs in the two classes 
was equalized: a number of nontarget epochs was removed 
randomly from the EEG trace. Component amplitudes were 
calculated from difference ERP (emotiogenic/target minus 
nontarget) as maximal (P300, P200) or minimal (N170) val-
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li was 81.4 ± 2.9% and was greater than that for emotio-
genic stimuli with passive attention (Z = 3.07, p < 0.01). 
Classifi cation accuracy for regimes with passive attention 
was more than twice the random level of 16.7% (selection 
of one of six stimuli) and the signifi cance of these differ-
ences was confi rmed by the permutation test with random 
shuffl ing of epochs on training the classifi er: p < 0.01 for 
both regimes. Despite the low mean accuracy, about a third 
of subjects in blocks with passive attention achieved accu-
racies of 60–80%. The classifi cation accuracy of stimuli 
based on photographic images of faces correlated directly 
with the amplitude of the N170 component in response to 
these stimuli (R = 0.59, p < 0.05). In the blocks with active 
attention, accuracy correlated directly with the amplitude 
of the P300 component in responses to target stimuli (R = 
= 0.58, p < 0.05 for Cz and R = 0.68, p < 0.05 for Pz).
 Discussion. The aims of the present work were to 
identify the features of ERP in response to presentation of 
emotionally colored stimuli to humans without active atten-
tion to them and to explain whether and how reliably a pas-
sive attention reaction to such stimuli can be classifi ed in 
the framework of existing BCI-P300 algorithms. The main 
result was that the ERP response to such emotiogenic stim-
uli had a number of features and even without active atten-
tion to these stimuli they could be extracted among other 
stimuli using the BCI with accuracy statistically signifi cant-
ly exceeding the random level.
 In selecting a command using the BCI-P300, the user 
usually consciously focuses attention on the target stimuli, 
following instructions to count the number of presentations, 
ignoring nontarget stimuli. Recognition accuracy for the tar-
get command generally approaches 90% [Guger et al., 2009; 
Ganin and Kaplan, 2014]. Modeling of this paradigm in the 

compared with 5.08 ± 0.31 μV in lead Pz, and was greater 
than that in response to emotiogenic stimuli (1.58 ± 0.19 μV, 
t(13) = 7.97, p < 0.01 and 1.95 ± 0.24 μV, t(13) = 10.45, p < 
< 0.01, respectively). The amplitude of the P200 component 
(in Cz) and the N170 component did not differ between the 
target and emotiogenic stimuli (p > 0.05). However, the am-
plitude of P200 in lead Pz in response to emotiogenic stimu-
li was 1.99 ± 0.20 μV and was greater than that in response 
to target stimuli (1.30 ± 0.17 μV, t(12) = –2.22, p < 0.05).
 The type of stimulus material in blocks (1) and (2) was 
compared with passive attention by analyzing the amplitudes 
of ERP components in responses to emotiogenic stimuli 
based on photographs of human faces and images (Fig. 1). 
The amplitude of the N170 component for image stimuli was 
–1.66 ± 0.15 μV and was greater than that for face stimuli 
(–0.70 ± 0.19 μV, t(12) = 3.98, p < 0.01). The amplitudes of 
the P300 component in leads Cz and Pz for image stimuli 
were 1.78 ± 0.25 and 2.11 ± 0.25 μV and were also greater 
than for facial stimuli (1.14 ± 0.14 μV, t(13) = –3.30, p < 0.01 
and 1.13 ± 0.11 μV, t(13) = –4.82, p < 0.01, respectively). 
The amplitude of the P200 component in lead Cz showed 
no difference between the two types of stimulus (p > 0.05), 
though Pz showed a tendency to differences: P200 amplitude 
for facial stimuli was 1.70 ± 0.24 μV, while for image stimuli 
it was 1.13 ± 0.30 μV (t(12) = 2.04, p = 0.06).
 Figure 2 shows results on the classifi cation accuracy 
of target/emotiogenic stimuli in the three blocks. In blocks 
with passive attention, the mean recognition accuracy of the 
classifi er for the most emotiogenic stimuli was 45.7 ± 5.5% 
and was not signifi cantly different from that for the block 
with facial stimuli (39.3 ± 6.2%, Z = 0.84, p > 0.05, paired 
Wilcoxon test). Classifi cation accuracy for target stimuli in 
conditions of active attention in blocks with image stimu-

Fig. 1. Mean amplitude of the N170 (n = 13), P200 (n = 13), and P300 
(n = 14) components in blocks with passive attention (emotiogenic stimuli) 
and in the block with active attention (emotiogenic and target neutral stim-
uli). Means and standard errors of the mean are given. *p < 0.05, #p < 0.1.

Fig. 2. Classifi cation accuracy for emotiogenic (in blocks with passive at-
tention) and target (in blocks with active attention) images for all subjects 
(n = 14). Means and standard errors of the mean are shown. *Difference 
from regime with passive attention (p < 0.05).



1097Properties of EEG Responses to Emotionally Signifi cant Stimuli

tion was greater than in the task with passive attention to 
the same sets of stimulus material (Fig. 1). On the one hand, 
in the block with active attention, subjects received the 
instruction to note the target stimulus, and this task could 
attract the main attention resource to processing target but 
not emotiogenic stimuli. On the other hand, in the block 
in which subjects passively observed stimulus presentation, 
the overall level of attention to stimuli was lower, as there 
were no active stimulus discrimination tasks. These differ-
ently directed effects could arise because ERP amplitude in 
response to emotiogenic stimuli could be greater in one case 
or the other, or could be the same, if these factors compen-
sated for each other. However, the higher level of attention 
to the task evidently led to clearer differences in responses 
to emotiogenic and neutral stimuli, while the processing of 
emotionally signifi cant stimuli occurred independently of 
the processing of target stimuli. This is consistent with re-
sults reported in [Asmaro et al., 2012; Asmaro et al., 2014] 
and supports the ability of emotionally colored stimuli to 
evoke responses in conditions of conscious processing of 
the target stimulus [Ohman et al., 2011].
 Another important result in relation to the P200 com-
ponent is that in block (3) its amplitude in response to emo-
tiogenic stimuli outside the focus of attention was greater 
than in responses to the target neutral stimuli which the sub-
ject had to note (Fig. 1). Although P200 is a component with 
considerable similarity to P300 and given that both are sen-
sitive to the stimulus having target signs [Luck, 2005], the 
P200 component refl ects not only processing of the charac-
teristic signs of the stimulus, but is also connected with the 
processes of perception of emotionally colored stimuli 
[Carretie et al., 2004]. This sensitivity of the P200 compo-
nent to the existence of involuntary attention to the emotio-
genic stimulus, particularly at high levels of attention to the 
stimuli being presented, allows this component to be re-
garded as a potentially signifi cant characteristic for detec-
tion of an unclear focus of attention to emotiogenic stimuli. 
For technical reasons it was not possible to analyze classifi -
cation accuracy separately for emotiogenic stimuli in block 
(3) with active attention to neutral stimuli, with the aim of 
comparing it with the accuracy for emotiogenic stimuli in 
block (2). However, the results presented here suggest that 
in block (3), with active attention, the accuracy for emotio-
genic stimuli could be higher and could even correlate with 
P200 amplitude.
 In this study, the amplitudes of the N170 and P300 
components in blocks with passive attention in response to 
emotiogenic stimuli were greater for image stimuli (block 2) 
than for face stimuli (block 1) (Fig. 1). The use of stimuli 
based on images of faces is because some of the character-
istics of ERP are linked with recognition of the face as a 
structure [Cauquil et al., 2000] and with differences in the 
emotional coloration of such stimuli [Sprengelmeyer and 
Jentzsch, 2006]. Differences in the amplitudes of compo-
nents between the two types of stimulus can be explained 

present study gave a mean classifi cation accuracy for one 
of the six stimuli which the subjects consciously counted 
of more than 80%, which was signifi cantly greater than the 
random level of classifi cation (17.6%). At the same time, the 
mean classifi cation accuracy of the most emotiogenic stim-
ulus of each set presented in blocks with passive attention, 
when the subject was not instructed to count any particular 
stimulus, was no greater than 46%, i.e., about half the accu-
racy in the block with active attention (Fig. 2). The quite high 
classifi cation accuracy when subjects paid active attention to 
stimuli as determined by EEG responses, as demonstrated by 
ourselves and in other studies, appears to be determined by 
the direct relationship between the extent of the P300 com-
ponent and the signifi cance of the stimulus, as instructed, in 
the context of the operator task [Picton, 1992].
 In turn, the signifi cant but low values of classifi cation 
accuracy for emotiogenic stimuli may be due to the low am-
plitudes of P300 and other ERP components in responses to 
stimuli presented without prior instructions, i.e., without the 
context of the recognition task. This is supported by the ex-
istence of a signifi cant correlation between the detection 
accuracy of emotiogenic/target stimuli in the BCI and the 
amplitude of P300 only in the block with active attention, in 
which P300 for target stimuli was more than double that for 
emotiogenic stimuli (Fig. 1). The sensitivity of P300-based 
technology is evidently conserved even when the subject 
does not consciously focus active attention on the stimulus 
if its deviance in some way signifi cant for the subject is pre-
served and if this stimulus is perceived at the unconscious 
level [Polich et al., 1989; Bernat et al., 2001]. Emotiogenic 
stimuli are known to induce specifi c EEG responses due to 
increased levels of attention to such stimuli, which is appar-
ent as increases in the amplitude or the appearance of partic-
ular ERP components [Schupp et al., 2003]. The more than 
twofold increase over the random level on classifi cation of 
emotiogenic stimuli is evidence that ERP reactions can be 
used in BCI-P300 technology for detection of the subjective 
signifi cance of test stimuli, i.e., the occurrence of attention 
not apparent to the subject.
 In the most widespread approach, including in the pre-
sent studies, the BCI-P300 classifi cation algorithm does not 
use a priori information on specifi c components, analyz-
ing ERP during the time window after stimulus delivery. 
Classifi cation accuracy is therefore determined by the over-
all set of all components whose amplitudes for emotiogenic/
target stimuli differ from the amplitudes of nontarget stimu-
li. The studies reported here show that the most informative 
components for classifi cation of EEG reactions to different 
types of stimulus are the ERP components N170, P200, and 
P300. The P200 component showed the most interesting ef-
fects in relation to emotiogenic stimuli.
 In particular, in the task used in the present study, 
which is somewhat similar to the three-stimulus oddball 
paradigm [Katayama and Polich, 1999], P200 amplitude in 
response to emotiogenic stimuli outside the focus of atten-
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(200 msec with 500-msec intervals). The greater duration 
of stimulus presentation increased the time cost for data ac-
cumulation, which may be critical for systems for automatic 
detection of emotional foci of attention and is tedious for 
the user. Despite the fact that the mean parameters for clas-
sifi cation of emotiogenic stimuli in conditions of passive 
attention in our study were not large, they were compara-
ble with the results identifi ed above in other similar reports, 
though often cannot be compared directly with each other 
because of the use of a binary classifi cation in many stud-
ies (with a random level of 50%). It should also be noted 
that this study did not address the task of identifying the 
infl uence of the type of emotional coloration of the stimuli, 
while the stimuli being classifi ed in many similar reports 
were discriminated in terms of the valency and strength of 
emotions. At the same time, the results obtained here, tak-
en with the results of other studies on the characteristics of 
ERP produced in response to emotionally colored stimuli, 
allow the most suitable stimulus material, presentation par-
adigm, and classifi cation technique to be selected, overall 
promoting creation of the most effective systems for detect-
ing emotional foci of attention.
 Conclusions
 1. Classifi cation accuracy for emotionally colored 
stimuli presented in the passive attention paradigm in the 
BCI-P300 context was more than double the random level 
and individual subjects achieved higher levels, as compared 
with the command selection accuracy in BCI-P300 with ac-
tive attention to the target stimulus.
 2. The amplitude of the P200 component in respons-
es to emotiogenic stimuli outside the focus of attention was 
greater in the presence of higher levels of attention to the 
task. P200 amplitude was also greater in response to emotio-
genic stimuli outside the focus of attention than in responses 
to target neutral stimuli when attention to them was clearly 
attracted on the basis of instructions given to the subjects.
 3. The amplitudes of the N170 and P300 components 
in responses to stimuli with images with different themes 
and subjects were greater than in responses to stimuli with 
photographic images of human faces. At the same time, 
stimuli based on photographic images of faces had specifi c 
features in their emotional perception: the amplitude of the 
P200 component was greater than that for images and clas-
sifi cation accuracy correlated directly with the amplitude of 
the N170 component.
 This study was supported by the National Technological 
Initiatives Foundation “Neironet” Program.
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